Mitochondrial superoxide dismutase activation with 17 β-estradiol-treated human lens epithelial cells
نویسندگان
چکیده
PURPOSE 17 beta-estradiol (17beta-E(2)) protects human lens epithelial cells against oxidative stress by preserving mitochondrial function in part via the non-genomic rapid activation of prosurvival signal transduction pathways. The study described herein examined whether 17beta-E(2) also elicits genomic protection by influencing the expression (and activity) of mitochondrial-associated manganese superoxide dismutase (MnSOD) as a possible parallel mechanism by which 17beta-E(2) protects against oxidative stress. METHODS Virally-transformed human lens epithelial cells (HLE-B3) were pre-incubated with 17beta-E(2), and mRNA or protein lysates were collected over a time course ranging from 90 min to 24 h. Positive expression of lens epithelial cell MnSOD mRNA was determined by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and its levels were monitored by real-time PCR up to 24 h after 17beta-E(2) administration. Western blot analysis was used to examine the pattern of protein expression as influenced by 17beta-E(2) treatment. MnSOD activity as influenced by 17beta-E(2) was determined by measuring enzymatic activity. RESULTS A significant rapid increase in the activity of MnSOD was observed with HLE-B3 cells by 90 min post-bolus addition of 17beta-E(2), which returned to control level by 240 min. Neither an increase in MnSOD mRNA nor in protein expression was detected up through 24 h. CONCLUSIONS These data demonstrate that 17beta-E(2) rapidly and transiently increases the activity of MnSOD but influences neither its mRNA expression nor its protein expression. The results suggest that (estrogen-activated) MnSOD plays an important role against mitochondrial oxidative stress by diminishing reactive oxygen species, thus promoting cell survival.
منابع مشابه
17-β estradiol protects ARPE-19 cells from oxidative stress through estrogen receptor-β.
PURPOSE To elucidate the mechanism of 17-β estradiol (17β-E(2))-mediated protection of retinal pigment epithelium (RPE) from oxidative stress. METHODS Cultured ARPE-19 cells were subjected to oxidative stress with t-butyl hydroxide or hydrogen peroxide in the presence or absence of 17β-E(2). Reactive oxygen species (ROS) were measured using H(2)DCFDA fluorescence. Apoptosis was evaluated by c...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملEffects of 17-β estradiol on neurogenesis in the hippocampus of ovariectomized mice
Background & Aims: Adult neurogenesis occurs in the two main areas of the brain of most mammalian species in; sub ventricular zone, and the dentate gyrus of the hippocampus. Many factors such as 17-β estradiol affect neurogenesis in the hippocampus. The aim of this study was to investigate the effect of exogenous 17-β estradiol on neurogenesis in the ovariectomized (OVX) mice. Materials & Meth...
متن کاملRebamipide attenuates nonsteroidal anti-inflammatory drugs (NSAID) induced lipid peroxidation by the manganese superoxide dismutase (MnSOD) overexpression in gastrointestinal epithelial cells.
Nonsteroidal anti-inflammatory drugs (NSAIDs) often cause gastrointestinal complications such as gastric ulcers and erosions. Recent studies on the pathogenesis have revealed that NSAIDs induce lipid peroxidation in gastric epithelial cells by generating superoxide anion in mitochondria, independently with cyclooxygenase-inhibition and the subsequent prostaglandin deficiency. Although not clear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular Vision
دوره 14 شماره
صفحات -
تاریخ انتشار 2008